Connect with us

Business

Mortgage Expert Daniel Goldsmith Shares Advice for Lead Generation Success

mm

Published

on

Famed basketball player, Michael Jordan once said, “You must expect great things of yourself before you can do them.” Selling yourself short is never an option. Always think highly of yourself no matter what the circumstances are. Once you have this belief instilled in your mind, you can achieve greatness. In this day and age, where competition is cut-throat and dog-eats-dog, it is imperative to stay on top of your game. In 2020, it is important to adopt new-age techniques and philosophies to race ahead. To tell us more about it is the young, restless and relentless, Daniel Goldsmith.

Born on 15th October 1985 in Sacramento, California, Daniel made waves in the world of marketing and sales immediately after graduating. One of his first jobs was promoting nightlife in the city. That gave him the ultimate boost to dream and achieve bigger goals in life. Daniel learned further about networking and marketing and came up with some easy hacks to achieve success in the industry. In 2020, lead generation for sales and marketing has come a long way. Thanks to the internet, it is now a lot easier to find what you’re looking for. Every social media platform has numerous groups and communities. Daniel says, “All you need to do is find the one you wish to target and generate real-time leads. Communication is the key to success here. To attract your potential customers, you need to communicate with them in a “language” they are familiar with.” Daniel’s success in marketing comes with learning and training on the job. He has worked in numerous industries such as insurance, education, social security and many more. Daniel’s success mainly comes from the mortgage industry through which he generated numerous successful leads. In the world of mortgage companies, Daniel Goldsmith is one of the most sought after names. 

Achieving success in life has always been a challenge even for someone who has all the facilities and capabilities. Timing, passion, thirst and a bit of luck is needed to excel to the top level. By learning new ways and making the most out of it is what makes people achieve greatness. 

The idea of Bigtime Daily landed this engineer cum journalist from a multi-national company to the digital avenue. Matthew brought life to this idea and rendered all that was necessary to create an interactive and attractive platform for the readers. Apart from managing the platform, he also contributes his expertise in business niche.

Continue Reading
Advertisement
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Business

MetaWorx: Building Full-Stack AI Teams, Not Just Automation

mm

Published

on

Automation still dominates most headlines, yet the returns often fail to meet expectations. A sprawling chatbot rollout might shave a few support tickets, but it rarely shifts the profit-and-loss statement in a lasting way. 

McKinsey’s 2025 workplace survey pegs AI’s long-term productivity upside at $4.4 trillion, but only one percent of enterprises say they’ve reached true “AI maturity.” MetaWorx, a Dallas, Texas-based AI employee agency founded by Rachel Kite, argues that the shortfall has nothing to do with models and everything to do with people. 

“Treat AI like a point solution and you’ll get point-solution results,” shares Kite. “You need a roster that can carry the ball from raw data to governance, or the whole thing stalls at the proof-of-concept phase.”

The pod blueprint

When a plug-and-play automation script collapsed under real-world data drift, costing Kite a lucrative contract, she sketched the six-person “pod” that now anchors every MetaWorx engagement:

  1. An infrastructure architect to tame compute costs.
  2. A data engineer to secure and shape pipelines. 
  3. An applied scientist to prototype models against live feedback loops. 
  4. An MLOps engineer to automate rollback and retraining. 
  5. A domain product lead translates forecasts into features users actually notice. 
  6. Ethics and compliance analysts to stress test outputs for bias and keep the audit. 

The team’s first sprint still delivers a quick-win bot — “small enough to calm the CFO,” jokes Kite — but the roadmap quickly pivots to reliability, explainability, and eventually optimization. By tying every algorithmic decision to a quantifiable business metric, the pods turn AI from a science project into a growth lever. 

Recruiting for curiosity, not credentials

With Bain & Company predicting a global AI-skills crunch through 2027, MetaWorx has stopped chasing unicorn résumés. Instead, it hires “adjacent athletes”: a computer-vision PhD who hops from medical imaging to warehouse surveillance, or a former journalist who recasts her nose for story into prompt-engineering finesse.

“Domain expertise expires fast,” Kite says. “What doesn’t expire is the instinct to ask better questions.” The result is a lattice of overlapping skills that stays flexible when models wander into the long tail of edge-case data.

A culture of rapid experiments

Inside MetaWorx, every idea faces the same litmus test: ship something — anything — into a user’s hands within 21 days. The “three-week rule” forces prototypes into the wild early, where failure is cheap and feedback is swift. Post-mortems, including cost overruns, are circulated company-wide, erasing any stigma associated with missteps.

That laboratory mindset powers velocity. “Our first model is almost always wrong,” Kite admits, “but version 1.0 is the tuition we pay for version 2.0.” The philosophy echoes her TEDx talk on resilience: progress is iterative, not heroic.

How leaders can steal the playbook

Executives itching to replicate MetaWorx’s results don’t need a blank check. Kite offers a five-step sequence:

  • Inventory pain points, not tools: Walk the P&L line by line and tag the friction you can measure.
  • Map the stack to the problem: A recommendation engine, for instance, requires behavior data, retraining triggers, and feedback capture — automation alone won’t suffice.
  • Stand up a pod: Reassign existing talent into a cross-functional tiger team before hiring externally; the chemistry test is free.
  • Measure the story, not just the statistic: Pair model accuracy with human-scale metrics like ticket backlog or employee churn.
  • Budget for the boring: Reserve at least 30 percent of spend for MLOps and governance; Stanford’s HAI review links most AI failures to neglected upkeep.

Taken together, those steps shift AI from a pilot novelty to an operational habit that compounds value rather than topping out after an initial PR splash.

Character still scales faster than code

MetaWorx plans to double its headcount this year, yet Kite insists the secret isn’t a proprietary framework or a monster war chest. It’s credibility. Clients see a founder who has wrestled with the same outages and surprise bills they face. That authenticity converts skeptics faster than any algorithmic novelty.

“Tools level out,” Kite says. “Culture compounds.”

The insight lands in a marketplace still dazzled by generative fireworks. Yes, MetaWorx ships models and dashboards, but its true product is a mindset: resilience over rigidity, questions over credentials, experiments over edicts. In Kite’s world, automation is merely the appetizer. The main course is a full-stack team that knows why the model matters to the business and who owns its success after launch day.

And that, Kite argues, is how AI finally graduates from cost-cutter to growth engine, one curious pod at a time.

Continue Reading

Trending